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Abstract
Using the tools of the J-matrix method, we absorb the 1/r singularity of the
Yukawa potential in the reference Hamiltonian, which is handled analytically.
The remaining part, which is bound and regular everywhere, is treated by
an efficient numerical scheme in a suitable basis using the Gauss quadrature
approximation. Analysis of resonance energies and bound states spectrum is
performed using the complex scaling method, where we show their trajectories
in the complex energy plane and construct a video showing how bound states
cross over into resonance states by varying the potential parameters.

PACS numbers: 03.65.Ge, 34.20.Cf, 03.65.Nk, 34.20.Gj
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The Yukawa potential [1] is used in various areas of physics to model singular but short-range
interactions. In high energy physics, for example, it is used to model the interaction of hadrons
in short-range gauge theories where coupling is mediated by the exchange of a massive scalar
meson [1, 2]. In atomic and molecular physics, it represents a screened Coulomb potential
due to the cloud of electronic charges around the nucleus, which could be treated in the
Thomas–Fermi approximation that leads to [3]

V (r) = −A

r
e−µr , (1)

where µ is the screening parameter and A is the potential strength. This potential also
describes the shielding effect of ions embedded in plasmas where it is called the Debye–Hückel
potential [4]. It has also been used to describe the interaction between charged particles in
plasmas, solids and colloidal suspensions [5]. The number of bound states of the Yukawa
potential is always finite. However, due to the delicate nature of the resonances in the Yukawa
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potential, this subject did not receive adequate attention in the literature [6]. The solution of
the Schrödinger equation for this potential has been investigated extensively in the past using
various numerical and perturbative approaches since exact analytical solutions are not possible
[7]. Despite the short-range behavior of the potential due to the decaying exponential factor
e−µr , the r−1 singularity at the origin makes the task of obtaining accurate or even meaningful
solutions a non-trivial and sometimes formidable task. Most of the perturbative and variational
calculations found in the literature suffer from the limited accuracy when considering a wider
range of potential parameters. Our approach constitutes a significant contribution in this
regard. It is inspired by the J-matrix method [8] that handles this particular singularity not just
accurately but, in fact, exactly leaving the remaining non-singular and finite part to be easily
treated numerically to the desired accuracy.

The J-matrix method is an algebraic method for extracting resonance and bound states
information using computational tools devised entirely in square-integrable bases. The total
Hamiltonian is a sum two parts: a reference Hamiltonian H0 and the remaining terms which are
combined into an effective potential U(r). The reference Hamiltonian is treated analytically
and, thus, its contribution will be accounted for in full. As such, it must belong to the class of
exactly solvable problems that could include singular interactions like r−1 (e.g., the Coulomb
potential). However, the effective potential U(r) will be treated numerically. Therefore,
for meaningful results, it must be non-singular, bounded everywhere and, preferably but not
necessarily, short range [9]. Now, the discrete L2 bases used in the calculation and analysis
are required to carry a tridiagonal matrix representation for the reference wave operator.
The use of discrete basis sets offers considerable advantage in the calculation because it is
an algebraic scheme that requires only standard matrix technique. The real power of our
approach comes from the unique feature of J-matrix method that allowed us to isolate the r−1

singularity of the Yukawa potential and absorb it into the reference Hamiltonian where it is
treated exactly analytically [10]. Moreover, the choice of basis, which supports a tridiagonal
matrix representation for the reference wave operator, results in a very efficient, stable and
highly accurate means for evaluating the matrix elements of the remaining regular part (the
effective potential) using the Gauss quadrature integral approximation [11]. Broeckhove et al
introduced modification to the J-matrix method to improve its convergence and reduce the
computational cost [12]. They demonstrated their approach by application to the Yukawa
potential with no special treatment of its singularity. The ‘oscillator basis’ was used and
the reference Hamiltonian contained only the kinetic energy operator. In our approach,
we use an alternative basis (the ‘Laguerre basis’) to comply with the J-matrix requirement
of a tridiagonal matrix representation for the reference Hamiltonian that includes now the
r−1 singularity. Working in a finite but highly accurate matrix representation of the total
Hamiltonian, we study the bound states spectrum and resonance energies using the method of
complex scaling [13]. We investigate the behavior of these energy eigenvalues and follow their
trajectories in the complex energy plane as we vary the two Yukawa potential parameters. As
a result, we confirm the observation that as the potential parameters vary, bound states move
up the energy spectrum until they reach the continuum where they experience transition into
scattering states3. The transition from a bound state with vanishing decay width to a resonance
with finite lifetime in the continuum is referred to in the literature as the Mott transition [14].
This phenomenon is demonstrated graphically and shown as video animation. To illustrate
the utility and accuracy of our approach, bound states and resonances energies are compared
satisfactorily with those obtained by other studies. Additionally, we present results for a range
of values of the potential parameters that were never probed before. In the following, we start

3 The same observation has recently been reported in [6].
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developing the tools of the approach and then apply them with the help of the J-matrix and
complex scaling methods to arrive at our findings.

The time-independent Schrödinger equation for a particle of mass m and charge q in the
combined field generated by the Coulomb potential and a spherically symmetric potential V(r)
reads as follows:

(H − E)|ψ〉 =
[
−1

2

d2

dr2
+

�(� + 1)

2r2
+

Z

r
+ V (r) − E

]
|ψ〉 = 0, (2)

where we have used the atomic units h̄ = m = q = 1 and length is measured in units of
a0 = 4πε0h̄

2/mq2. In our case, V(r) is the Yukawa potential given by equation (1). The
combination Z

r
+ V (r) in equation (2) is a Hellmann-type potential. Because of the r−1-type

singularity of this potential, which is easily handled by the J-matrix method, we absorb it in
the reference Hamiltonian by writing it as follows:

H0 = −1

2

d2

dr2
+

�(� + 1)

2r2
+
Z
r

, (3)

where Z = Z − A. Therefore, the effective potential U = H − H0, which will be treated
numerically, has the following form [15]4:

U(r) = −A

r
(e−µr − 1). (4)

One can easily verify that this effective potential is regular and bounded everywhere.
Consequently, we can evaluate its contribution (matrix elements) in a suitable L2 basis to the
desired accuracy using any preferred numerical integration scheme. The r−1-type singularity
in the reference Hamiltonian and the requirement that its matrix representation be tridiagonal
dictate that the J-matrix basis used should be the ‘Laguerre basis’ defined as [10]

φn(x) = anx
α e−x/2 Lν

n(x); n = 0, 1, 2, . . . (5)

where x = λr , λ > 0, α > 0, ν > −1, Lν
n(x) is the Laguerre polynomial and an is the

normalization constant
√

λ	(n + 1)/	(n + ν + 1). Choosing α = � + 1 and ν = 2� + 1 gives
the following tridiagonal matrix representation for H0 [16]:

8

λ2
(H0)nm =

(
2n + ν + 1 +

8Z
λ

)
δn,m +

√
n(n + ν)δn,m+1 +

√
(n + 1)(n + ν + 1)δn,m−1. (6)

In the manipulation, we used the differential equation, differential formula, three-term
recursion relation and orthogonality formula of the Laguerre polynomials [17]. Now, the
only remaining quantity that is needed to perform the calculation is the matrix elements of the
effective potential U(r). This is obtained by evaluating the integral

Unm =
∫ ∞

0
φn(λr)U(r)φm(λr) dr = λ−1anam

∫ ∞

0
xν e−x Lν

n(x)Lν
m(x)[xU(x/λ)] dx. (7)

The evaluation of such an integral for a general effective potential is almost always done
numerically. We use the Gauss quadrature approximation [11], which gives

Unm
∼=

N−1∑
k=0

�nk�mk[εkU(εk/λ)], (8)

for adequately large integer N. εk and {�nk}N−1
n=0 are the N eigenvalues and corresponding

eigenvectors of the N × N tridiagonal basis overlap matrix 〈φn | φm〉. Therefore, the reference
Hamiltonian H0 in this representation, which is given by equation (6), is accounted for in full.

4 A similar perturbative approach to find the bound states analytically was adapted by Smith [15].
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On the other hand, the effective potential U is approximated by its matrix elements in a subset
of the basis. In this communication, we limit our investigation to the structure and dynamics of
bound states and resonances and are contented with a finite-dimensional representation of the
total Hamiltonian. It is worthwhile noting that for a one-particle effective Hamiltonian, like
in this work, there is a larger degree of freedom in the choice of basis since it is constrained
only by the potential. However, in a many-particle approach this freedom is constrained by
other physical considerations. Having the additional Coulomb term in H0 will not affect
our computations which are done analytically as shown in the matrix elements given by
equation (6) with an effective charge Z = Z − A. Our choice Z = 0 is just for comparison
purposes with other groups5 [18, 19] who took Z = 0 in their computations. In fact, we did
take Z �= 0 in table 3 where we show the rate of convergence of our calculation with the basis
size N. Nonetheless, the screened Coulomb potential describes adequately a single particle
problem. Having an additional Coulomb term superposed with the Yukawa potential might be
meaningful in describing the effective interaction in a many-body environment [20]. However,
in a many-particle J-matrix approach the choice of basis will be more involved since it requires
a many-cluster configuration for both entrance and exit channels [21].

Direct study of bound states and resonances is usually performed in the complex energy
plane (E-plane). In such studies, these states are identified with the poles of the Green’s
function, which is defined formally in the E-plane as G(E) = (H − E)−1. For systems with
self-adjoint Hamiltonian, resonances are located in the lower half of the second sheet of the
complex energy plane. These are bound-like states that are unstable and decay with a rate
that increases with the (negative) value of the imaginary part of the resonance energy due to
the factor e−iEt in the wavefunction. Sharp or ‘shallow’ resonances (those located below and
close to the real energy axis in the E-plane) are more stable. They decay more slowly and are
easier to obtain than broad or ‘deep’ resonances that are located below, but far from, the real
energy axis. Consequently, interest is normally focused on resonances with an imaginary part
that is smaller that the real part. Moreover, resonances are not confined only to the continuum
sector. For certain potentials (e.g., V = V0r

2 e−r ) these may also be found embedded between
bound states, such that the real part of the resonance energy becomes negative [22]. In such
cases, however, these states are typically the most unstable, with the negative imaginary part
of the energy being the largest. One of the methods of investigation of resonances in the
E-plane is the complex scaling (a.k.a. complex rotation) method [13]. In this method,
the radial coordinate gets transformed as r → r eiθ , where θ is a real angular parameter.
The effect of this transformation on the pole structure of the Green’s function consists of the
following: (1) the discrete bound state spectrum that lies on the negative energy axis remains
unchanged; (2) the branch cut (the discontinuity) along the real positive energy axis rotates
clockwise by the angle 2θ ; (3) resonances in the lower half of the complex energy plane
located in the sector bound by the new rotated cut line and the positive energy axis get exposed
and become isolated. However, due to the finite size of the basis used in the calculation, the
rotated cut line gets replaced by a string of interleaved poles and zeros of the finite Green’s
function, which tries to mimic the cut structure. One can easily show that the complex scaling
transformation r → r eiθ of the total Hamiltonian in configuration space is equivalent to the
transformation of its matrix elements by changing the scale parameter as λ → λ e−iθ .

Figure 1 is a snapshot from a video animation (a series of accurate graphical
representations) in the E-plane of the calculated energy eigenvalues of the finite N × N
total Hamiltonian matrix without complex scaling (θ = 0). In the animation, we took � = 1,

5 The variational energies of the bound states and resonances for � = 1, 2, . . . , 10 were collected from Bylicki
website http://www.fizyka.umk.pl/˜mirekb/yukawa.html.
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Figure 1. (1.26 MB MPG) Snapshot from video animation of the calculated energy eigenvalues
of the finite total Hamiltonian matrix in the E-plane without complex scaling (θ = 0). During the
animation, A was varied from 80 to 0.0 (au) and we took � = 1, µ = 5 (au).

6 4 2 0 2 4

10

8

6

4

2

2

Re(E )

Im(E)

Figure 2. (1.56 MB MPG) Snapshot from the same video animation but with complex scaling
where θ = 1.0 radians.

µ = 5 (au) and A was varied from 80 to 0 (au). The string of points on the positive real line is
the set of energy eigenvalues corresponding to the discretized continuum line. In the beginning
where A = 80 there is only one bound state in view with an energy near E = −3.2 (au). As the
bottom of the effective potential well rises (with A decreasing) this energy eigenvalue starts
shifting up in the spectrum by moving to the right until it gets ‘absorbed’ into the continuum.
Decreasing A further, a new bound state comes into view from left moving to the right until
it eventually becomes embedded into the continuum as well. This process continues. In the
second animation, from which figure 2 is obtained as a snapshot, we show how bound states
do not just get absorbed into the continuum but, in fact, experience a transition into scattering
states [14]. To illustrate this, we use the complex scaling method described briefly above.
It is obvious from the second video that the bound states energy eigenvalues that move to the
right half of the E-plane do not rotate with the continuum line but follow their own resonance
trajectories. These trajectories are stable against variations in all computational parameters
(the rotation angle θ , basis scaling parameter λ, etc). Figure 3 is a plot of these trajectories
for the three states contributing to the animation. We have also seen the same phenomenon
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Table 1. Bound states and resonance energies for the Yukawa potential with the given parameters. The strength of the potential is normalized as A = 1.0. Our results are compared with
those of others [18, 19] (see footnote 5). All values are in atomic units.

References � µ E [references] E [this work]

[18] 0 0.10 −0.407 058 030 613 403 156 754 507 070 −0.407 058 030 613
0.10 −0.049 928 271 331 918 889 234 996 681 −0.049 928 271 332

1 0.200 00 −4.101 646 530 7840 × 10−3 −4.101 646 530 802 × 10−3

2 0.08 −3.248 360 428 751 9935 × 10−3 −3.248 360 428 763 × 10−3

[19] 1 0.112 −5.003 810 × 10−5 −5.008 834 873 206 × 10−5

0.113 +1.631 328 × 10−5 − i 1.0250 × 10−6 +1.690 357 641 732 × 10−5 − i 1.862 588 128 150 × 10−6

0.122 +4.216 372 95 × 10−4 − i 3.251 9395 × 10−4 +4.214 837 407 095 × 10−4 − i 3.251 672 270 506 × 10−4

See footnote 5 1 0.112 604 85 −3.932 6971 × 10−2 −3.932 698 311 615 × 10−2

0.113 240 71 +3.096 4751 × 10−5 − i 4.628 3598 × 10−6 +3.096 253 670 542 × 10−5 − i 4.640 977 622 365 × 10−6

0.221 317 05 +1.375 8648 × 10−4 − i 1.528 7316 × 10−5 +1.375 843 424 574 × 10−4 − i 1.528 916 191 194 × 10−5

2 0.092 +1.410 647 × 10−4 − i 1.1700 × 10−6 +1.410 607 617 484 × 10−4 − i 1.170 284 982 249 × 10−6

0.207 193 91 −7.434 4785 × 10−3 −7.434 478 537 514 × 10−3

0.207 193 91 +7.561 4845 × 10−4 − i 5.3974260 × 10−4 +7.561 484 464 990 × 10−4 − i 5.397 425 935 464 × 10−4

5 0.324 319 43 +2.879 1297 × 10−5 − i 4.908 1260 × 10−12 +2.879 132 724 089 × 10−5 − i 4.651 948 920 811 × 10−12

0.392 665 64 +9.497 8169 × 10−4 − i 2.449 7104 × 10−4 +9.497 816 886 083 × 10−4 − i 2.449 710 308 446 × 10−4

10 0.342 834 28 −5.556 3066 × 10−6 −5.556 304 541 175 × 10−6

0.344 955 66 +7.218 8283 × 10−6 − i 0.000 +7.218 866 481 722 × 10−6 − i 1.786 030 250 706 × 10−15
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Table 2. Bound states and resonance energies for a wider range of parameters of the Yukawa
potential. All values are in atomic units.

� µ A E

Bound states 0 1.0 30 −420.734 052 0442
−85.294 720 788 85
−25.849 431 442 98
−7.656 289 423 403
−1.517 703 985 470
−0.020 763 186 246

1 0.5 20 −40.596 985 428 31
−13.631 564 171 58
−4.917 728 174 528
−1.546 320 478 514
−0.285 657 326 503

2 0.2 10 −3.751 512 770 069
−1.494 005 746 764
−0.566 900 519 026
−0.168 517 340 167
−0.019 233 342 003

Resonances 2 10 108 3.060 697 264 14 − i 0.062 214 727 55
170 2.484 957 438 98 − i 0.080 496 968 75
248 1.502 758 9904 − i 0.037 679 6110

5 2 110 2.420 889 9272 − i 0.076 858 9832
3.013 948 8985 − i 3.604 952 7387

170 1.024 443 520 − i 0.003 598 625
2.236 370 014 − i 2.381 751 848

200 1.359 477 152 − i 0.029 358 570
1.815 292 940 − i 2.549 254 736

10 1 200 1.057 885 231 − i 0.000 001 090
1.651 827 352 − i 4.794 059 401
3.065 622 630 − i 2.731 016 510
3.264 518 294 − i 0.639 296 036

repeated when fixing the strength of the potential A while varying its range parameter µ.
Video animations and figures for this case are available upon request from the corresponding
author.

To illustrate further the utility and accuracy of our approach, we use it to calculate
bound states and resonance energies for a given set of physical parameters where we can
compare our results with those obtained elsewhere [18, 19] (see footnote 5). Our calculation
strategy is as follows. For a given choice of physical parameters, we investigate the stability
of calculated eigenvalues that correspond to bound states and/or resonances as we vary the
scaling parameter λ until we reach a plateau in λ [23]. Then to improve on the accuracy
of the results, we select a value of λ from within the plateau and increase the dimension of
the space N until the desired accuracy is reached. Table 1 lists some of the bound states
and resonance energies where our results are compared with available numerical data [18, 19]
(see footnote 5) satisfactorily. However, table 2 contains results that are unique to our approach
since the values of the potential parameters and range of energies fall outside the applicability
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Figure 3. A plot in the complex energy plane of the trajectories of the energy eigenvalues (in
atomic units) corresponding to the three states (bound and resonance) contributing to the video
animation.

Table 3. Rate of convergence of our calculation with the basis size N. We list bound states energies
for a given set of physical parameters (all in atomic units). We took a non-zero Coulomb charge
(Z = 5 for all). For the set of results with µ = 0.2 and µ = 0.5, we took A = 15 and � = 1.
However, for µ = 0.7 and µ = 1.0, we took A = 20 and � = 0.

µ N = 5 N = 10 N = 15 N = 30 N = 50

0.2 9.614 261 235 426 9.644 658 116 717 9.644 664 974 192 9.644 664 974 936 9.644 664 974 935 78
2.900 686 172 717 2.901 595 170 495 2.901 595 172 998 2.901 595 172 998 2.901 595 172 998 09
0.729 583 582 889 0.729 834 164 058 0.729 834 165 016 0.729 834 165 016 0.729 834 165 016 40

0.5 5.840 256 925 186 5.866 288 283 420 5.866 300 243 571 5.866 300 248 314 5.866 300 248 313 82
0.054 831 962 128 0.056 313 117 618 0.056 313 222 725 0.056 313 222 746 0.056 313 222 745 99

0.7 96.197 054 383 58 98.963 536 611 46 98.975 782 492 98 98.975 811 483 42 98.975 811 483 4149
15.892 592 137 35 15.910 877 340 77 15.910 877 617 79 15.910 877 617 80 15.910 877 617 7983

2.189 033 498 853 2.192 676 846 601 2.192 676 961 610 2.192 676 961 613 2.192 676 961 613 25

1.0 90.725 018 836 43 93.447 371 131 65 93.459 768 680 42 93.459 800 369 88 93.459 800 369 8851
11.632 898 234 10 11.652 905 490 99 11.652 906 403 25 11.652 906 403 31 11.652 906 403 3084

of most perturbative and variational calculations found elsewhere. For the two tables, we
took the basis size N = 200. Table 3 shows the convergence rate of our calculation of bound
states energy spectrum with the basis size N for a given set of physical parameters. However,
the larger the size of the spectrum, the larger the value of N needed to maintain the same
accuracy over the whole spectrum. More results could also be obtained from the corresponding
author. Finally, this approach could easily be generalized to handle other short-range potentials
with r−1 singularity. For example, we are currently involved in extending it to the Hulthén
potential.
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